
MISRA C:2012 Amendment 4
Updates for ISO/IEC 9899:2011/2018
Phase 3 — Multi-threading and atomics
March 2023

First published March 2023 by The MISRA Consortium Limited
1 St James Court
Whitefriars
Norwich
Norfolk
NR3 1RU
UK

www.misra.org.uk

Copyright © 2023 The MISRA Consortium Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks owned by The MISRA Consortium
Limited. Other product or brand names are trademarks or registered trademarks of their respective
holders and no endorsement or recommendation of these products by MISRA is implied.

ISBN 978-1-911700-03-6 PDF

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

MISRA C:2012 Amendment 4
Updates for ISO/IEC 9899:2011/2018
Phase 3 — Multi-threading and atomics
March 2023

MISRA internal use only i

i

MISRA Mission Statement

We provide world-leading, best practice guidelines for the safe and secure application of both
embedded control systems and standalone software.

MISRA is a collaboration between manufacturers, component suppliers and engineering
consultancies which seeks to promote best practice in developing safety- and security-related
electronic systems and other software-intensive applications. To this end, MISRA publishes
documents that provide accessible information for engineers and management, and holds events to
permit the exchange of experiences between practitioners.

Disclaimer

Adherence to the requirements of this document does not in itself ensure error-free robust software or
guarantee portability and re-use.

Compliance with the requirements of this document, or any other standard, does not of itself confer
immunity from legal obligations.

ii

Foreword

An updated edition of the C Standard, ISO/IEC 9899:2011, commonly referred to as C11, was
released just as MISRA C:2012 was being prepared for publication, meaning it arrived too late for the
MISRA C Working Group to take it into consideration. Subsequently a further edition,
ISO/IEC 9899:2018, commonly referred to as C18, followed.

As the adoption of C11 and then C18 became more widespread, the MISRA C Working Group
decided that it was time to address these new editions of the C Standard, support for which is being
implemented by means of a series of amendments to MISRA C:2012. To date, the following have
been published:

● MISRA C:2012 Amendment 2 C11 Core (published February 2020), and

● MISRA C:2012 Amendment 3 C11/C18 New features (published October 2022).

This document further amends MISRA C:2012 as required to introduce support for most of the
remaining new features introduced by C11 and C18, as well as some additional guidance on existing
language features.

We trust that this amendment will be welcomed by the community at large, and will offer confidence
to projects and organizations who have held off migrating to C11 or C18.

Andrew Banks FBCS CITP
Chairman, MISRA C Working Group

iii

Acknowledgements

The MISRA consortium would like to thank the following individuals for their significant contribution
to the writing of this document:

Andrew Banks LDRA Ltd. and Intuitive Consulting

Dave Banham BlackBerry Ltd.

Alex Gilding Perforce Software Inc.

Daniel Kästner AbsInt Angewandte Informatik GmbH

The MISRA consortium also wishes to acknowledge contributions from the following members of the
MISRA C Working Group during the development and review process:

Roberto Bagnara BUGSENG and University of Parma

Jill Britton Perforce Software Inc.

Gerlinde Kettl Vitesco Technologies GmbH

Michal Rozenau Parasoft Corp.

Chris Tapp LDRA Ltd. and Keylevel Consultants Ltd.

The MISRA consortium also wishes to acknowledge contributions from the following individuals
during the development and review process:

Gaétan Noël BlackBerry Ltd.

David Ward HORIBA MIRA Ltd.

Liz Whiting LDRA Ltd.

DokuWiki was used extensively during the drafting of this document. Our thanks go to all those
involved in its development.

This document was typeset using Open Sans. Open Sans is a trademark of Google and may be
registered in certain jurisdictions. Digitized data copyright © 2010–2011, Google Corporation.
Licensed under the Apache License, Version 2.0.

iv

Contents

1 Overview 1
1.1 Applicability 1
1.2 C language updates 1

2 New guidance 2
2.1 Section 7 — Directives 2
2.2 Section 8 — Rules 7

3 Technical Corrigenda 31

4 Consequential amendments 35
4.1 Section 8 — Rules 35
4.2 Section 9 — References 36
4.3 Appendix A — Summary of Guidelines 36
4.4 Appendix B — Guidelines attributes 38
4.5 Appendix H — Undefined and critical unspecified behaviour 39
4.6 Appendix J — Glossary 42

5 Supporting documents 43
5.1 Addendum 3 — Coverage against CERT C 43

6 References 44
6.1 MISRA C 44
6.2 The C Standard 45
6.3 Other Standards 45
6.4 Other References 45

v

1 Overview

1.1 Applicability

This amendment is intended to be used with MISRA C:2012 (Third Edition, First Revision) [2] as
revised and amended by

● MISRA C:2012 Amendment 2 [6],

● MISRA C:2012 Amendment 3 [7], and

● MISRA C:2012 Technical Corrigendum 2 [4]

This amendment is also compatible with MISRA C:2012 (Third Edition) [1] as revised and amended by:

● MISRA C:2012 Amendment 1 [5],

● MISRA C:2012 Amendment 2 [6],

● MISRA C:2012 Amendment 3 [7],

● MISRA C:2012 Technical Corrigendum 1 [3], and

● MISRA C:2012 Technical Corrigendum 2 [4]

1.2 C language updates

This document further amends MISRA C:2012 as follows:

1. To permit the use, with restrictions, of the following ISO/IEC 9899:2011 [12] features:

▬ Atomic functions (<stdatomic.h>)

▬ Multi-threading (<threads.h>)

2. To provide further guidance on the use of the following:

▬ Small integer constants

▬ Unused objects

▬ Chained initialization (also revises Rule 9.4)

▬ Variably-modified arrays (also revises Rule 18.10)

When using ISO/IEC 9899:2011 [12], use of the following features remains prohibited without the
support of a deviation against Rule 1.4:

● Bounds-checking interfaces (Annex K)

Notes:

1. ISO/IEC 9899:2018 [13] incorporates corrigenda applicable to ISO/IEC 9899:2011 [12]. As
such, it is functionally equivalent to ISO/IEC 9899:2011 and is therefore also supported
through this amendment.

1

2 New guidance

2.1 Section 7 — Directives

2.1.1 Create new section 7.5 — Concurrency Considerations

Amendment

Add new section 7.5 and associated directives.

AMD4.1 : Add new Section 7.5 for Concurrency Considerations

7.5 Concurrency considerations

AMD4.2 : Add the following new directives in the new section 7.5:

Dir 5.1 There shall be no data races between threads

C11 [Undefined 5, *]

Category Required

Applies to C11

Amplification

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location. The execution of a program contains a data race if it
contains two conflicting actions in different threads, at least one of which is not atomic, and neither
happens before the other, i.e. there is no fixed ordering between the two actions. To prevent data
races, objects shared between different threads shall be protected by an appropriate
synchronization mechanism.

Rationale

Data races are caused by simultaneous accesses to the same non-atomic object from two different
threads T1 and T2 where at least one of them is a write access and where the program semantics
does not impose a fixed ordering between T1 and T2. There may be legitimate program executions
where the access from T1 is executed before the access from thread T2, and vice versa, or where a
given access itself is interrupted. Any such data race results in undefined behaviour.

There are several critical scenarios:

● Depending on the timing of the threads, sometimes in a given context the wrong value might
be used, leading to unexpected results.

● If a read or write access is implemented by several machine instructions, a pre-emption
might occur between these instructions such that inconsistent values might be read or
written. As an example, a 64-bit variable read implemented as two 32-bit load instructions
might be interrupted after reading the first 32 bits. Then another thread might change the
variable value. When the first thread resumes, it reads the second 32-bit half, which now
contains a different value than when the first 32 bits of the variable were read.

In general, a data race can cause memory corruption and lead to unexpected, erroneous or erratic
behaviour. Data races typically manifest sporadically and are very hard to reproduce.

2

To prevent such situations, when an object is shared between different threads, it shall be protected
by an appropriate synchronization mechanism. To ensure consistent access within a single shared
object it can be declared as atomic. A more general solution to ensure consistency of accesses is to
introduce critical sections with mutex locks or condition variables.

Note: C library functions may access objects with static or thread storage duration directly or
indirectly via the function’s arguments. The C library functions setlocale, tmpnam, rand, srand, getenv,
getenv_s, strtok, strerror, asctime, ctime, gmtime, localtime, mbrtoc16, c16rtomb, mbrtoc32, c32rtomb,
mbrlen, mbrtowc, wcrtomb, mbsrtowcs, wcsrtombs are not guaranteed to be reentrant and may
modify objects with static or thread storage duration. To prevent data races explicit synchronization
may be required.

Example

The following example exhibits data races on the global variables x and a. Functions t1, t2, t3 and
t4 are executed as concurrent threads T1, T2, T3 and T4 respectively.

Variable x is accessed without synchronization, by function t1 in thread T1 and by function t2 in
thread T2. If executed on a 16-bit machine writing 32-bit values in two chunks of 16 bits, threads T1
and T2 might interrupt one another after the first 16 bits of the variable have been written. As a
consequence, the two 16-bit halves of variable x might be written by different threads, causing
unexpected values.

int32_t x;
int32_t a=1;
int32_t b;

int32_t t1(void *ignore) /* Thread T1 entry */
{
 while (1)
 {
 x = -1; /* Write-write data race with t2. Possible values of x: 0xFFFF0000,
 0x0000FFFF, 0x00000000, 0xFFFFFFFF */
 }
 return 0;
}

int32_t t2(void *ignore) /* Thread T2 entry */
{
 while (1)
 {
 x = 0; /* Write-write data race with t1. Possible values of x: 0xFFFF0000,
 0x0000FFFF, 0x00000000, 0xFFFFFFFF */
 }
 return 0;
}

A data race on a is caused by unprotected accesses by function t3 in thread T3 and by function t4
in thread T4. If thread T3 sees the value of 1 in variable a, it will enter the then-part of the conditional
statement. At that point, it might be interrupted by thread T4, which sets a to 0. After resuming,
thread T3 will run into a division by zero.

Section 2: N
ew

 guidance

3

int32_t t3(void *ignore) /* Thread T3 entry */
{
 while (1)
 {
 if (a != 0) /* Read-write data race with T4 */
 {
 b += 1/a; /* Read-write data race with T4 */
 a = 1; /* Write-write data race with T4 */
 }
 }
 return 0;
}

int32 t4(void *ignore) /* Thread T4 entry */
{
 while (1)
 {
 a = 0; /* Read-write data race with T3 */
 }
 return 0;
}

See also

Rule 9.7, Rule 12.6

Dir 5.2 There shall be no deadlocks between threads

C11 [Undefined *]

Category Required

Applies to C11

Amplification

A deadlock occurs when there is a circular chain of threads each of which holding a locked
synchronization resource and trying to lock a synchronization resource held by the next element in
the chain. To prevent deadlocks, synchronization mechanisms between threads shall not introduce
cyclic dependencies.

Rationale

An example for a deadlock between two threads T1 and T2 is when T1 enters the waiting state
because it requests a mutex Ra which is locked by thread T2, and T2 in turn is waiting for another
mutex Rb held by thread T1.

Possible solutions to avoid deadlocks include locking/unlocking synchronization resources in a fixed
global non-cyclic order, or associating synchronization resources with appropriate priorities.

Example

Assume that in the following example functions t1 and t2 are executed as concurrent threads T1
and T2. Thread T1 locks mutex Ra, then executes some other code in which it might be interrupted
by thread T2. Thread T2 locks mutex Rb, executes some other code, and is blocked when attempting
to lock mutex Ra, which is currently held by thread T1. Hence thread T1 resumes, and eventually
reaches the call to mtx_lock(&Rb) on which it blocks, because Rb is held by T2. Then execution is
stuck indefinitely because thread T1 is waiting for thread T2 and vice versa.

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

4

mtx_t Ra;
mtx_t Rb;

int32_t t1(void *ignore) /* Thread T1 entry */
{
 mtx_lock(&Ra);
 ...
 mtx_lock(&Rb); /* Deadlock may occur here */
 ...
 mtx_unlock(&Rb);
 mtx_unlock(&Ra);
 return 0;
}

int32_t t2(void* ignore) /* Thread T2 entry */
{
 mtx_lock(&Rb);
 ...
 mtx_lock(&Ra); /* Deadlock may occur here */
 ...
 mtx_unlock(&Ra);
 mtx_unlock(&Rb);
 return 0;
}

Dir 5.3 There shall be no dynamic thread creation

Category Required

Applies to C11

Amplification

Thread creation shall only occur in a well-defined program start-up phase.

Rationale

Uncertainty about the number of threads running at a particular point in time is error prone and
reduces analysability. Also the overhead in thread creation and destruction is hard to predict.

Usage of a static thread pool is common practice in operating systems for safety-related systems, e.g.
ARINC-653 [45], AUTOSAR [46] and OSEK [47].

Example

thrd_t id1;
thrd_t id2;

int32_t t1(void *ignore) /* Thread T1 entry */
{
 ...
 thrd_create(&id2, t2, NULL); /* Non-compliant, not constrained to start-up */
 ...
}

int32_t t2(void* ignore) /* Thread T2 entry */
{
 ...
}

Section 2: N
ew

 guidance

5

void main(void)
{
 thrd_create(&id1, t1, NULL); /* Compliant */
 ...
}

See also

Dir 4.7

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

6

2.2 Section 8 — Rules

2.2.1 New Rule 2.8 — Unused objects

Amendment

Add restrictions on unused objects.

AMD4.3 : Add the following new rule after Rule 2.7:

Rule 2.8 A project should not contain unused object definitions

Category Advisory

Analysis Decidable, System

Applies to C90, C99, C11

Amplification

An object is unused if the definition (and any declarations) can be removed, and the program still
compiles.

Rationale

If an object is defined but unused, then it is unclear to a reviewer if the object is redundant or it has
been left unused by mistake.

See also

Rule 8.6

2.2.2 New Rule 7.6 — Small integer constants

Amendment

Restrict the use of the small integer constants

AMD4.4 : Add the following new rule after Rule 7.5 (added by AMD3):

Rule 7.6 The small integer variants of the minimum-width integer constant
macros shall not be used

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99, C11

Amplification

The minimum-width integer constant macros are of the form INTn_C(value) and
UINTn_C(value), where n is a value corresponding to a type int_leastn_t.

Small integer refers to any integer type with width less than that of type int.

Section 2: N
ew

 guidance

7

Rationale

The Standard requires that the minimum-width integer constant macros expand to an integer
constant expression suitable for use in #if pre-processing directive, and that the type of the
expression has the same type as would result from integer promotion. Consequentially many
implementations of the small integer macros have opted to simply substitute the macro for the
argument. This results in an expression with type int and not the type that may have been anticipated
by the use of the macro.

Example

int main(void)
{
 uint8_t a = UINT8_C(100); /* Non-compliant - typically expands as plain 100
 i.e. as a signed int */
}

The following example shows the impact of the typing conflict:

#define M(x) _Generic((x), uint8_t: fu8, default: fi)(x)

int main(void)
{
 M(UINT8_C(100)); /* Non-compliant - selects fi, not fu8 */
}

See also

Rule 7.5

2.2.3 New Rule 9.6 — Chained initialization

Amendment

Add guidance on chained initialization.

AMD4.5 : Add the following new rule after Rule 9.5:

Rule 9.6 An initializer using chained designators shall not contain initializers
without designators

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99, C11

Amplification

A chained designator is a designator list that has more than one item, thus specifying an element of a
sub-object within the current object.

If an aggregate initializer uses designators to specify elements, and any designator in the initializer is
chained, every initializer in the entire containing initializer list shall specify an element explicitly using
a designator.

This rule applies to initializers for both objects and sub-objects.

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

8

Rationale

Using chained designators for selective sub-object designation can make the intent of the initializer
clear for some constructs such as sparse matrices. However, combining chained designators with
positional initialization is extremely unclear – a human reader cannot easily tell whether the intended
next object is within the sub-object, or within the same object level from which the designator started
lookup. The syntactic brace structure of the initializer list may also no longer match the depth of the
selected element, adding to the confusion.

Exception

A braced sub-object initializer may omit designators to specify elements if it does not contain any
chained designators, and no chained designators in the containing initializer list specify an element
inside it as the current object.

Example

struct S
{
 int x;
 int y;
};

struct T
{
 int w;
 struct S s;
 int z;
};

/* Non-compliant - chained designators and implicit positional initializers mixed */
struct T tt = {
 1,
 .s.x = 2, /* To a human reader, this looks like .z is being initialized */
 3, /* tt is actually initialized as { 1, { 2, 3 }, 0 } */
}; /* This also violates Rule 9.2 */

/* Compliant - allow the y dimension to implicitly initialize to zero */
struct S aa[5] = {
 [0].x = 1,
 [1].x = 2,
 [2].x = 3,
 [3].x = 4,
 [4].x = 5,
};

/* Compliant - the initializer for [1] is not chained, but is explicit */
struct S ab[2] = {
 [0].x = 1,
 [1] = { 2, 3 }, /* Compliant by exception: */
}; /* the positional initializers are inside a braced sub-object */

See also

Rule 9.2, Rule 9.4

2.2.4 New Rule 9.7 — Atomic initialization

Amendment

Add guidance on the initialization of atomic objects.

AMD4.6 : Add the following new rule after new Rule 9.6:

Section 2: N
ew

 guidance

9

Rule 9.7 Atomic objects shall be appropriately initialized before being accessed

C11 [Undefined 5, *]

Category Mandatory

Analysis Undecidable, System

Applies to C11

Amplification

Initialization of atomic objects shall be completed before accessing them.

For objects that do not have static storage duration, initialization shall be included in their declaration
using the assignment operator =, or using the Standard Library function atomic_init() before any other
access.

For objects of static storage duration, the default initialization is sufficient.

Rationale

An atomic object is to be initialized before it is accessed. Concurrent access to the object being
initialized, even via an atomic operation, constitutes a data race.

The atomic_init() function initializes atomic objects, including any additional state that the
implementation might need to carry for the atomic object. However, it does not avoid data races.

Because of the potential initialization of the implementation state, atomic_init() cannot be replaced by
other access functions, e.g. atomic_store(). Initialization of atomic objects inside of threads would
impose constraints on thread ordering which are hard to ensure or verify. An explicit protection, e.g.
by use of a mutex, would make atomicity unnecessary.

Example

_Atomic int32_t g_ai1; /* Compliant - default initialization */

void main(void)
{
 _Atomic int32_t ai1 = 22; /* Compliant - directly initialized */

 _Atomic int32_t ai2;
 ai2 = 777; /* Non-compliant - not initialized by atomic_init */

 _Atomic int32_t ai3;
 atomic_init(&ai3, 333); /* Compliant - Initialized by atomic_init */

 /* ------------ */

 _Atomic int32_t ai4;
 thrd_create(&id1, t1, &ai4);

 atomic_init(&ai4, 666); /* Non-compliant - Initialized after user-thread
 T1 is created */

 thrd_join (id1, NULL);
}

int32_t t1(t1_paramtype *ptr)
{
 /* accesses g_ai1, ai1, ai2, ai3, ai4 */
}

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

10

See also

Dir 5.1, Rule 1.5, Rule 9.1, Rule 12.6

2.2.5 Amend Rule 11.3

Amendment

Amend Exception in case of _Atomic qualification.

AMD4.7 : Amend the “Headline”:

A cast shall not …

to

A conversion shall not …

AMD4.8 : In the first sentence of the “Rationale”, replace:

Casting …

to

Conversion of …

AMD4.9 : Amend the “Exception”:

It is permitted to convert a pointer to object type into a pointer to one of the object types char,
signed char or unsigned char.

to

It is permitted to convert a pointer to a non-atomic qualified object type into a pointer to one of the
object types char, signed char or unsigned char.

2.2.6 Amend Rule 11.8

Amendment

Extend the Rule to cover _Atomic qualification.

AMD4.10 : Amend the “Headline”:

A cast shall not remove any const or volatile from the type pointed to by a pointer

to

A conversion shall not remove any const, volatile or _Atomic qualification from the type pointed to by
a pointer

AMD4.11 : In the first sentence of the “Rationale” section remove:

… by using casting …

AMD4.12 : Add an additional bullet point to the “Rationale”:

Removing an _Atomic qualifier might circumvent the lock status of an object and potentially result in
memory corruption.

Section 2: N
ew

 guidance

11

AMD4.13 : In the “Example” section add additional examples:

typedef struct s {
 uint8_t a;
 uint8_t b;
} s_t;

int main(void)
{
 _Atomic s_t astr;
 s_t lstr = { 7U, 42U };
 s_t *sptr = &astr; /* Non-compliant - removes _Atomic qualifier */
}

AMD4.14 : In the “See also” section append:

Rule 11.10

2.2.7 New Rule 11.10 — The _Atomic qualifier

Amendment

Add restrictions on the _Atomic qualifier.

AMD4.15 : Add the following new rule after Rule 11.9

Rule 11.10 The _Atomic qualifier shall not be applied to the incomplete type void

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Rationale

The C Standard does not explicitly prohibit usage of the type void with the _Atomic qualifier. However,
it does not provide a guarantee that a pointer to _Atomic void has any particular size or alignment
requirement, so it cannot be assumed that is the same as for a pointer to an arbitrary type _Atomic T,
and the behaviour of type conversion between them may be undefined.

Example

struct A {
 int32_t _Atomic x;
 int32_t _Atomic y;
};

void main (void)
{
 struct A a1 = { 6, 7 };

 void _Atomic * pav = &a1; /* Non-compliant */
 void _Atomic * pax = &a1.x; /* Non-compliant */
}

See also

Rule 11.8

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

12

2.2.8 New Rule 12.6 — Atomic structures and unions

Amendment

Add restrictions on the use of atomic-related structures and unions.

AMD4.16 : Add the following new rules after Rule 12.5:

Rule 12.6 Structure and union members of atomic objects shall not be directly
accessed

C11 [Undefined 42]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

The C Standard defines the following access functions for atomic objects: atomic_init(), atomic_store(),
atomic_load(), atomic_exchange(), atomic_compare_exchange().

Accesses to atomic objects of structure and union types shall only be made to the object as a whole,
and only using these functions and the assignment operator =. In particular, the . and -> operators
shall not be used on atomic objects of structure and union type.

Rationale

The Standard guarantees absence of data races when performing atomic operations on data shared
between threads without requiring explicit protection via mutex or condition variables. The
operations have to be performed by dedicated access functions which provide an appropriate built-
in protection. Direct access to structure or union members of atomic objects circumvents this
protection, thus making them vulnerable to data races.

Note: The atomic_init() functions does not avoid data races. Concurrent access to the variable being
initialized, even via an atomic operation, constitutes a data race.

Example

typedef struct s {
 uint8_t a;
 uint8_t b;
} s_t;
_Atomic s_t astr;

sint32_t main(void)
{
 s_t lstr = { 7U, 42U };

 astr.b = 43U; /* Non-compliant */

 lstr = atomic_load(&astr);
 lstr.b = 43U;
 atomic_store(&astr, lstr); /* Compliant */

 lstr.a = 8U;
 astr = lstr; /* Compliant */
}

Section 2: N
ew

 guidance

13

See also

Dir 5.1, Rule 11.4, Rule 9.7

2.2.9 Amend Rule 13.2 — Concurrency

Amendment

Extend the Rule to cover concurrency aspects.

AMD4.17 : Amend the “Headline”:

The value of an expression and its persistent side effects shall be the same under all permitted
evaluation orders

to

The value of an expression and its persistent side effects shall be the same under all permitted
evaluation orders and shall be independent from thread interleaving

AMD4.18 : In the first line of the “Amplification” section, remove:

or within any full expression

AMD4.19 : In the “Amplification” section, amend bullet point 4:

There shall be no more than one modification access with volatile-qualified type;

to

There shall be no more than one modification access with volatile-qualified or atomic type;

AMD4.20 : In the “Amplification” section, add a new bullet point 6:

There shall be no more than one read access to an object with atomic type.

AMD4.21 : In the “Amplification” section, delete the final sentence:

Full expressions are defined in the statements and blocks section of the C Standard.

AMD4.22 : In the “Rationale” section, add a new paragraph after the existing bullet point list:

The atomic types provide assurance that a single read or write access to an atomic object is not
subject to interruption or potential interference from other threads. However, that does not prevent
two distinct atomic accesses to the same variable by a thread being pre-empted by another thread
modifying that variable. On non-atomic variables such interference can only be caused by data races
and constitute undefined behaviour. By definition, although there are no data races on atomic
variables, such interference is still undesirable.

AMD4.23 : In the “Example” section, append a new example:

In the following example, Thread T2 might interrupt Thread T1 while the expression a - a is
evaluated. Then the first load instruction for a loads the value 10, but the second load operation
loads the value 7. The compliant solution avoids the problem by storing the value of a in a local
variable.

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

14

_Atomic int32_t a;

int32_t t1(void* ignore) /* Thread T1 entry */
{
 int32_t v1, v2;
 int32_t acopy;

 a = 10;
 acopy = a; /* acopy may be either 10 or 7 */

 v1 = a - a; /* Non-compliant - v1 may be 0 or 3 */
 v2 = acopy - acopy; /* Compliant - v2 is always 0 */

 return v1 + v2;
}

int32_t t2(void* ignore) /* Thread T2 entry */
{
 a = 7;

 return a;
}

2.2.10 Amend Rule 18.6

Amendment

Extend the scope of the rule to include thread-local objects.

AMD4.24 : Amend the “Headline”:

The address of an object with automatic storage shall not be copied to another object that persists
after the first object has ceased to exist.

to

The address of an object with automatic or thread-local storage shall not be copied to another object
that persists after the first object has ceased to exist.

Section 2: N
ew

 guidance

15

2.2.11 Rule 18.8 and new Rule 18.10 — Guidance on VLAs

Amendment

Focus Rule 18.8 on just variable-length arrays, and exclude variably-modified arrays.

AMD4.25 : In the “Headline” section, replace the headline:

Variable-length array types …

to

Variable-length arrays …

AMD4.26 : In the first line of the first paragraph of the “Rationale” section, replace:

Variable-length array types …

to

Variable-length arrays …

AMD4.27 : In the third line of the third paragraph of the “Rationale” section, replace:

… in which it is required to be compatible with another array type, possibly itself variable-length, then
…

to

… in which its type is required to be compatible with the type of another array, then …

AMD4.28 : In the first line of the fifth paragraph of the “Rationale” section, replace:

… variable-length array type …

to

… variable-length array …

AMD4.29 : Update the “Example” section:

Delete function h() (which now forms part of new Rule 18.10)

AMD4.30 : Update the “See also” section to add:

, Rule 18.10

Amendment

Add guidance on the use of variably-modified array types

AMD4.31 : Add the following new rule after Rule 18.9 (added by AMD3):

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

16

Rule 18.10 Pointers to variably-modified array types shall not be used

C99 [Undefined 69, 70], C11 [Undefined 75, 76]

Category Mandatory

Analysis Decidable, Single Translation Unit

Applies to C99, C11

Amplification

A pointer to a variably-modified array type shall not be used in the declaration of any object or
parameter.

A parameter declared to have an array type is not a pointer-to-array type (unless it is an array of
arrays), because it is rewritten to a pointer to the element type.

Rationale

Compatibility between array types requires the size specifiers for the pointed-to arrays to have equal
values. However, for variably-modified array types this cannot be determined at compile-time.

If two pointers to array types are used in any way that requires them to be compatible (such as
assignment), and the size specifiers for the pointed-to array are not the same, the behaviour is
undefined. This is undecidable in general, effectively leaving all such operations untyped.

Example

/* Non-compliant */
void f1 (uint16_t n, uint16_t (* a) [n])
{
 uint16_t (*p)[20];
 p = a; /* undefined unless n == 20, but types always assumed compatible */
}

/* Compliant */
void f2 (uint16_t n, uint16_t a[n])
{
 uint16_t * p;
 p = a; /* pointed-to type is not variably-modified, always well-defined */
}

See also

Rule 18.8

2.2.12 New Rule 21.25 — Atomic functions

Amendment

Add restrictions on the use of atomic-related Standard Library functions.

AMD4.32 : Add the following new rule after Rule 21.24 (added by Amendment 3):

Section 2: N
ew

 guidance

17

Rule 21.25 All memory synchronization operations shall be executed in
sequentially consistent order

C11 [Undefined *]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

The Standard provides an enumerated type memory_order to specify the behaviour of memory
synchronization operations. Only the memory order memory_order_seq_cst shall be used.

The following library functions implicitly use memory ordering memory_order_seq_cst:

● atomic_store()

● atomic_load()

● atomic_exchange()

● atomic_compare_exchange_strong()

● atomic_compare_exchange_weak()

● atomic_fetch_add()

● atomic_fetch_sub()

● atomic_fetch_or()

● atomic_fetch_xor()

● atomic_fetch_and()

● atomic_flag_test_and_set()

● atomic_flag_clear()

For each of these functions, there exists an alternate version with the function name ending in
_explicit(), which takes an explicit memory_order parameter. The functions ending in _explicit() shall
only be called with the enumeration memory_order_seq_cst as the memory_order parameter.

Also the following functions shall only be called with the enumeration memory_order_seq_cst as the
memory_order parameter:

● atomic_thread_fence()

● atomic_signal_fence()

Rationale

The Standard defines memory_order_seq_cst as the default memory order for objects with atomic
types. This ordering is fully defined in the C Standard and enables sequential consistency. The
behaviour of other memory orders is non-portable, as it depends on hardware architecture and
compiler.

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

18

For memory_order_relaxed, no operation orders memory. Usage of memory_order_relaxed can cause
unintuitive behaviour and is error-prone.

Many of those library functions listed above impose restrictions on the memory order allowed, e.g. it
is undefined behaviour if the atomic_store generic function is called with a memory_order_acquire,
memory_order_consume, or memory_order_acq_rel order argument. In case of non-compliant usage,
compilers may show warnings but still generate code.

Example

typedef struct s {
 uint8_t a;
 uint8_t b;
} s_t;
_Atomic s_t astr;

void main(void)
{
 s_t lstr = {7, 42};

 atomic_init(&astr, lstr);

 lstr = atomic_load(&astr); /* Compliant */
 lstr = atomic_load_explicit(&astr, memory_order_relaxed); /* Non-compliant */

 lstr.b = 43;
 atomic_store_explicit(&astr, lstr, memory_order_release); /* Non-compliant */
}

See also

Dir 4.13

2.2.13 New Rules 21.26 — Mutex functions

Amendment

Add restrictions on the use of mutex Standard Library functions.

AMD4.33 : Add the following new rule after new Rule 21.25:

Rule 21.26 The Standard Library function mtx_timedlock() shall only be invoked on
mutex objects of appropriate mutex type

C11 [Undefined *]

Category Required

Analysis Undecidable, System

Applies to C11

Amplification

The first argument of the Standard Library function mtx_timedlock() shall be a mutex object of mutex
type mtx_timed or (mtx_timed | mtx_recursive).

Section 2: N
ew

 guidance

19

Rationale

Calling the function mtx_timedlock() on a mutex object that does not support timeout is undefined
behaviour.

Example

mtx_t Ra;
mtx_t Rb;
mtx_t Rc;
struct timespec *ts;

void main(void)
{
 mtx_init(&Ra, mtx_plain);
 mtx_init(&Rb, mtx_timed);
 mtx_init(&Rc, mtx_timed | mtx_recursive);
 ...
}

int32_t t1(void* ignore)
{
 ...
 mtx_timedlock(&Ra, ts); /* Non-compliant */
 mtx_timedlock(&Rb, ts); /* Compliant */
 mtx_timedlock(&Rc, ts); /* Compliant */
 ...
}

2.2.14 New Rules 22.11-22.20 — Threads

Amendment

Add guidance on the use of threads.

AMD4.34 : Add the following new rules after Rule 22.10:

Rule 22.11 A thread that was previously either joined or detached shall not be
subsequently joined nor detached

C11 [Undefined *]

Category Required

Analysis Undecidable, System

Applies to C11

Rationale

Invoking thrd_detach() or thrd_join() on a thread that has been previously detached or joined is
undefined behaviour.

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

20

Example

void main(void)
{
 thrd_t id1, id2, id3, id4;

 thrd_create(&id1, t1, NULL);
 thrd_create(&id2, t2, NULL);
 thrd_create(&id3, t3, NULL);
 thrd_create(&id4, t4, NULL);

 thrd_join (id1, NULL); /* Compliant */
 thrd_join (id1, NULL); /* Non-compliant - already joined */

 thrd_detach(id2); /* Compliant */
 thrd_detach(id2); /* Non-compliant - already detached */

 thrd_join (id3, NULL); /* Compliant */
 thrd_detach(id3); /* Non-compliant - already joined */

 thrd_detach(id4); /* Compliant */
 thrd_join (id4, NULL); /* Non-compliant - already detached */
}

Rule 22.12 Thread objects, thread synchronization objects, and thread-specific
storage pointers shall only be accessed by the appropriate Standard
Library functions

C11 [Undefined *]

Category Mandatory

Analysis Undecidable, System

Applies to C11

Amplification

Thread objects shall exclusively be accessed via the Standard Library functions thrd_create(),
thrd_detach(), thrd_join(), and thrd_equal().

Mutex objects shall exclusively be accessed via the Standard Library functions mtx_destroy(), mtx_init(),
mtx_lock(), mtx_trylock(), mtx_timedlock(), mtx_unlock(), cnd_wait(), and cnd_timedwait().

Condition variables shall exclusively be accessed via the Standard Library functions cnd_broadcast(),
cnd_destroy(), cnd_init(), cnd_signal(), cnd_wait(), and cnd_timedwait().

Thread-specific storage pointers shall exclusively be accessed by the Standard Library functions
tss_create(), tss_delete(), tss_get(), and tss_set().

Rationale

Thread objects and thread synchronization objects are expected to be unique for the corresponding
thread and synchronization resources.

Thread-specific storage pointers are identified by unique keys. Any direct manipulation (copy,
assignment, etc.) may result in undefined behaviour. The tss_delete(), tss_get() and tss_set() functions
shall only be called with a value for key that was returned by a call to tss_create(), otherwise the
behaviour is undefined.

Section 2: N
ew

 guidance

21

Example

mtx_t Ra;
mtx_t Rb;
thrd_t id1;
thrd_t id2;
tss_t key;

int32_t t1(void *ignore)
{
 mtx_lock(&Ra);
 int32_t val;
 if (id1 == id2) /* Non-compliant - use thrd_equal() */
 {
 Rb = Ra; /* Non-compliant */
 memcpy(&Rb, &Ra, sizeof(mtx_t)); /* Non-compliant */
 }

 if (thrd_equal(id1, id2)) /* Compliant */
 {
 ...
 }
 key++; /* Non-compliant - explicit manipulation of
 TSS pointer */
 tss_set(key, &val); /* Undefined, value of key not returned by
 tss_create() */
}

void main(void)
{
 mtx_init (&Ra, mtx_plain);
 mtx_init (&Rb, mtx_plain);
 tss_create (&key, NULL);
 thrd_create(&id1, t1, NULL);
 thrd_create(&id2, t1, NULL);
 ...
}

See also

Rule 11.5, Rule 22.20

Rule 22.13 Thread objects, thread synchronization objects and thread-specific
storage pointers shall have appropriate storage duration

C11 [Undefined 9, 10, 11]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

Objects of type thrd_t, mtx_t, cnd_t, and tss_t shall not have automatic storage duration nor thread
storage duration.

Rationale

Determining the lifetime of non-static objects which depend on thread execution state is difficult and
error-prone. In particular, sharing objects of automatic storage duration between threads and using

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

22

them to control concurrent execution can cause undefined behaviour due to accessing them outside
of their lifetime.

Usage of a static pool of synchronization resources is common practice in many safety-related
operating systems, including ARINC-653 [45], AUTOSAR [46] and OSEK [47].

Example

mtx_t Ra; /* Compliant */

int32_t t1(void *ptr) /* Thread entry */
{
 ...
 mtx_lock (&Ra);
 mtx_lock ((mtx_t*)ptr); /* Lifetime of Rb might have ended
 ... pointer might be dangling */
 ...
 mtx_unlock((mtx_t*)ptr); /* Lifetime of Rb might have ended
 ... pointer might be dangling */
 mtx_unlock(&Ra);
}

void main(void)
{
 thrd_t id1; /* Non-compliant */
 mtx_t Rb; /* Non-compliant */

 mtx_init (&Ra, mtx_plain);
 mtx_init (&Rb, mtx_plain);
 thrd_create(&id1, t1, &Rb);
}

Rule 22.14 Thread synchronization objects shall be initialized before being
accessed

C11 [Undefined 9]

Category Mandatory

Analysis Undecidable, System

Applies to C11

Amplification

Before being accessed, mutex objects shall be initialized by calling mtx_init(), and condition variables
by calling cnd_init().

The second parameter of mtx_init() shall be either mtx_plain, mtx_timed, (mtx_plain | mtx_recursive),
or (mtx_timed | mtx_recursive).

Rationale

Mutex objects have to be explicitly created by calling function mtx_init(), and condition variables have
to be explicitly created by calling function cnd_init().

Invoking mtx_init() with a different value of its type parameter than listed above is undefined
behaviour.

Initializing all synchronization objects before creating the threads accessing them is a deterministic
way to prevent threads from accessing synchronization objects with indeterminate state.

Section 2: N
ew

 guidance

23

Example

mtx_t Ra;
mtx_t Rb;
mtx_t Rc;

int32_t t1(void *ignore) /* Thread T1 entry */
{
 mtx_init(&Rb, mtx_plain); /* Non-compliant - T2 may have already accessed Rb */
 ...
 /* Subsequently locks/unlocks Ra, Rb, Rc */
}

int32_t t2(void *ignore)
{
 /* locks/unlocks Ra, Rb, Rc */
}

thrd_t id1, id2;

void main(void)
{
 mtx_init (&Ra, mtx_plain); /* Compliant */

 thrd_create(&id1, t1, NULL);
 thrd_create(&id2, t2, NULL);

 mtx_init (&Rc, mtx_plain); /* Non-compliant - T1/T2 may have already
 accessed Rc */

 thrd_join (id1, NULL);
 thrd_join (id2, NULL);

 mtx_destroy(&Ra);
 mtx_destroy(&Rb);
 mtx_destroy(&Rc);
}

See also

Dir 4.7

Rule 22.15 Thread synchronization objects and thread-specific storage pointers
shall not be destroyed until after all threads accessing them have
terminated

C11 [Undefined 9, 10, *]

Category Required

Analysis Undecidable, System

Applies to C11

Rationale

The Standard Library function mtx_destroy(mtx) releases all resources used by the mutex pointed to
by mtx. Destroying a mutex which is still locked by some thread results in undefined behaviour, as
the C Standard expects no threads to be blocked by a mutex when it is destroyed.

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

24

The Standard Library function tss_delete(key) releases all resources used by the thread-specific
storage identified by key. Calling the tss_delete(), tss_get() or tss_set() functions after the thread
commenced executing destructors results in undefined behaviour.

Calling the Standard Library function cnd_destroy(), on a condition variable on which a thread is
currently waiting, results in undefined behaviour.

These problems are avoided by only destroying synchronization resources and deleting thread-
specific storage after all threads accessing them have terminated (or not at all).

Example

mtx_t Ra;
mtx_t Rb;
tss_t key1;
tss_t key2;
thrd_t id1;
thrd_t id2;

int32_t t1(void *ignore) /* Thread T1 entry */
{
 /*
 ** locks/unlocks Ra, Rb
 ** accesses thread-specific storage pointed to by key1, key2
 */

 tss_delete(key1); /* Non-compliant - might still be accessed from T2 */
}

int32_t t2(void *ignore) /* Thread T2 entry */
{
 /*
 ** locks/unlocks Ra, Rb
 ** accesses thread-specific storage pointed to by key1, key2
 */

 mtx_destroy(&Rb); /* Non-compliant - T1 might still access Rb */
}

void main(void)
{
 mtx_init (&Ra, mtx_plain);
 mtx_init (&Rb, mtx_plain);

 tss_create (&key1, NULL);
 tss_create (&key2, NULL);

 thrd_create(&id1, t1, NULL);
 thrd_create(&id2, t2, NULL);

 spendSomeTime();

 tss_delete (key2); /* Non-compliant - might still be accessed by t1, t2 */

 thrd_join (id1, NULL);
 thrd_join (id2, NULL);

 mtx_destroy(&Ra); /* Compliant */
 tss_delete (key1); /* Compliant */
}

See also

Rule 22.1

Section 2: N
ew

 guidance

25

Rule 22.16 All mutex objects locked by a thread shall be explicitly unlocked by the
same thread

C11 [Undefined *]

Category Required

Analysis Undecidable, System

Applies to C11

Amplification

If a mutex object mtx is locked by mtx_lock(mtx) at a program point p there shall be an explicit
mtx_unlock(mtx) for mutex object mtx on all programs paths reachable from p before exiting the
thread.

Rationale

When a thread terminates without releasing a lock, that lock may be held for indeterminate time. If
the life range of a mutex object ends while there are threads waiting for it the behaviour is
undefined.

Destroying a mutex on which threads are waiting is undefined behaviour.

Note: it is good practice to unlock mutexes in the same function and under the same control
dependences in which they have been locked.

Example

mtx_t Ra;
mtx_t Rb;

int32_t t1(void *ignore) /* Thread 1 */
{
 bool_t b;

 mtx_lock (&Ra); /* Compliant */
 mtx_unlock(&Ra);

 mtx_lock (&Rb); /* Non-compliant - unlock missing on one path */
 if (b)
 {
 mtx_unlock(&Rb);
 }
 return 0;
}

See also

Dir 4.13, Rule 22.1

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

26

Rule 22.17 No thread shall unlock a mutex or call cnd_wait() or cnd_timedwait() for
a mutex it has not locked before

C11 [Undefined *]

Category Required

Analysis Undecidable, System

Applies to C11

Amplification

A mutex shall only be unlocked by a thread if it has been locked by that thread before.

The cnd_wait() and cnd_timedwait() functions shall only be called by a thread on a mutex that is locked
by that thread.

Rationale

Unlocking a mutex which has not been locked by the calling thread is undefined behaviour. Calling
cnd_wait() or cnd_timedwait() with mutex argument mtx requires that the mutex pointed to by mtx be
locked by the calling thread.

Example

mtx_t Ra;
mtx_t Rb;
cnd_t Cnd1;
cnd_t Cnd2;

int32_t t1(void *ignore) /* Thread 1 */
{
 mtx_lock (&Ra);
 mtx_unlock(&Ra); /* Compliant */

 mtx_unlock(&Ra); /* Non-compliant - mutex is not locked */

 cnd_wait (&Cnd1, &Ra); /* Non-compliant - mutex is not locked */

 mtx_unlock(&Rb); /* Non-compliant - mutex either not locked, or
 ... is locked by different thread */

 cnd_wait (&Cnd2, &Rb); /* Non-compliant - mutex either not locked, or
 ... is locked by different thread */

 return 0;
}

int32_t t2(void *ignore) /* Thread 2 */
{
 mtx_lock (&Rb);
 doSomething();
 mtx_unlock (&Rb); /* Compliant */
 return 0;
}

See also

Dir 4.13, Rule 22.1, Rule 22.18

Section 2: N
ew

 guidance

27

Rule 22.18 Non-recursive mutexes shall not be recursively locked

C11 [Undefined *]

Category Required

Analysis Undecidable, System

Applies to C11

Amplification

A non-recursive mutex shall only be locked by a thread if it has not already been locked by that
before.

Rationale

It is undefined behaviour if a non-recursive mutex is recursively locked by the calling thread. If the
thread also attempts to unlock the mutex twice, the second call to mtx_unlock() will also result in
undefined behaviour, since the mutex then will already be unlocked.

Example

mtx_t Ra;
mtx_t Rb;

int32_t t1(void *ignore) /* Thread 1 */
{
 mtx_lock (&Rb); /* Compliant */
 mtx_lock (&Rb); /* Compliant - Rb is recursive */
 mtx_unlock(&Rb); /* Rb still locked */
 mtx_unlock(&Rb); /* Rb gets unlocked */

 mtx_lock (&Ra); /* Compliant */
 mtx_lock (&Ra); /* Non-compliant - undefined behaviour, deadlock possible */
 mtx_unlock(&Ra); /* If reachable (i.e. no deadlock), Ra gets unlocked */
 mtx_unlock(&Ra); /* Undefined behaviour if reachable */

 return 0;
}

thrd_t id1;
thrd_t id2;

int32_t main(void)
{
 mtx_init (&Ra, mtx_plain);
 mtx_init (&Rb, mtx_recursive);
 thrd_create(&id1, t1, NULL);
 ...
}

See also

Dir 4.13, Rule 22.1, Rule 22.17

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

28

Rule 22.19 A condition variable shall be associated with at most one mutex object

C11 [Undefined *]

Category Required

Analysis Undecidable, System

Applies to C11

Rationale

If the same condition variable is used with different mutex objects by two threads, it is undefined
which mutex will be unlocked upon signalling the condition variable.

Example

mtx_t Ra;
mtx_t Rb;
cnd_t Cnd;

int32_t t1(void *ignore)
{
 mtx_lock (&Ra);
 cnd_wait (&Cnd, &Ra); /* Non-compliant - t2 uses Cnd with Rb */
 mtx_unlock(&Ra);
 return 0;
}

int32_t t2(void *ignore)
{
 mtx_lock (&Rb);
 cnd_wait (&Cnd, &Rb); /* Non-compliant - t1 uses Cnd with Ra */
 mtx_unlock(&Rb);
 return 0;
}

int32_t t3(void* ignore)
{
 cnd_signal(&Cnd); /* Unblocks one of Ra and Rb...
 ... unclear whether t1 or t2 resumes */
 return 0;
}

Rule 22.20 Thread-specific storage pointers shall be created before being
accessed

C11 [Undefined 9, *]

Category Mandatory

Analysis Undecidable, System

Applies to C11

Amplification

Objects of type tss_t shall be explicitly created by tss_create() before being accessed.

Section 2: N
ew

 guidance

29

Rationale

Thread-specific storage pointers have to be explicitly created before accessing them. Creating them
inside of threads creates dependencies on thread execution and ordering which are hard to
maintain and check. Creating them before creating the threads accessing them is a deterministic way
to prevent threads from accessing thread-specific storage pointers with indeterminate state.

Example

tss_t key1;
tss_t key2;
thrd_t id1;
thrd_t id2;
int32_t g1;
int32_t g2;

int32_t t2(void *ignore) /* Thread t2 entry */
{
 tss_create(&key1, NULL); /* Non-compliant - thread t1 might already have
 tried to access key1 */
}

int32_t t1(void *ignore) /* Thread t1 entry */
{
 tss_set (key1, &g1); /* Non-compliant - might not yet be created */
 tss_set (key2, &g2); /* Compliant */

 int32_t *v1 = tss_get(key1);
 int32_t *v2 = tss_get(key2);

 *v1 = computeG1();
 *v2 = computeG2();
}

void main(void)
{
 int32_t i;

 tss_create(&key2, NULL); /* Compliant */

 thrd_create(&id1, t1, NULL);
 thrd_create(&id2, t2, NULL);

}

See also

Dir 4.13

Se
ct

io
n

2:
 N

ew
 g

ui
da

nc
e

30

3 Technical Corrigenda

3.1.1 Update section 6.9 — Presentation of the guidelines

Amendment

Add new explanations of the “Example” and “See also” sections:

AMD4.35 : Immediately before the paragraph commencing “The supporting text is not…” insert:

Within the supporting text, there may be a heading titled “Example”, followed by code snippets
demonstrating the application of the guideline. These code snippets may be incomplete, for the sake
of brevity (for example, an if statement without its body, or the omission of function call return value
checking).

Within the supporting text, there may be a heading titled “See also”, followed by a list of other
guidelines which are related to or interact with the guideline.

AMD4.36 : Remove the existing Note:

Note: where code is quoted … brevity.

3.1.2 Amend Rule 2.2 and Rule 2.7 — Inconsistent headlines

Amendment

Amend rule headlines to align with other Rule 2.x headlines

AMD4.37 : Amend the Rule 2.2 “Headline”:

There shall be no dead code

to

A project shall not contain dead code

AMD4.38 : Amend the Rule 2.7 “Headline”:

There should be no unused parameters in functions

to

A function should not contain unused parameters

3.1.3 Amend Rule 3.1 — URIs in comments

Amendment

Add an explicit exception for Uniform Resource Identifiers (URIs)

AMD4.39 : In the “Exception” section, number the existing exception as 2

AMD4.40 : In the “Exception” section, add a new exception:

1. Uniform resource identifiers, of the form {scheme}://{path}, are permitted within comments.

31

AMD4.41 : In the “Example” section, add a new example:

The following example demonstrates the use of a URI in a comment, and is compliant by exception 1.

/*
** The MISRA C:2012 example suite can be found at
** https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012
*/

3.1.4 Amend Rule 8.6 — Missing "See also"

Amendment

Add a “See also” omitted from AMD3

AMD4.42 : Add a new “See also” section:

See also

Rule 8.15

3.1.5 Amend Rule 8.9 — "Declared" not "defined"

Amendment

“Declared” should be used instead of “defined”

AMD4.43 : In the “Headline” section, replace:

… defined …

with

… declared …

AMD4.44 : At the start of the first paragraph of the “Rationale” section, replace:

Defining …

with

Declaring …

AMD4.45 : In the second paragraph of the “Rationale” section, replace:

… defined …

with

… declared …

AMD4.46 : In the preamble to the second example in the “Example” section, replace:

… defined …

with

… declared …

Se
ct

io
n

3:
 T

ec
hn

ic
al

 C
or

ri
ge

nd
a

32

3.1.6 Amend Rule 9.4 — Designated initializers

Amendment

Clarify the guidance on the use of designated initializers.

AMD4.47 : In the “Amplification” section, replace the second paragraph with:

An aggregate initializer shall not contain two designators that refer to the same sub-object. An
aggregate initializer shall not allow the current object to implicitly initialize an element that has been
initialized previously in the initializer list.

AMD4.48 : In the “Rationale” section, replace the first paragraph of with:

The provision of designated initializers allows the naming of the components of an aggregate
(structure or array) or of a union to be initialized within an initializer list and allows the object’s
elements to be initialized in any order by specifying the array indices or structure member names
they apply to (elements having no initialization value assume the default for uninitialized objects).

A designator can specify elements to be initialized in a different syntactic sequence from their order
within the object layout. An initializer without a designator will always initialize the next subobject
within the object layout.

Care is required when using designated initializers since the initialization of object elements can be
inadvertently repeated. The C Standard specifies that the value produced by the syntactically-last
initializer referring to an element in the list is used, overriding any preceding initializers for that
element. The Standard leaves unspecified whether overridden initializers are evaluated, and
therefore whether or not any side effects in the initializing expressions occur or not. This is not listed
in Annex J of the C Standard.

AMD4.49 : In the “Example” section, append the following additional example:

/*
 * Positional initializer element values can overwrite earlier ones
 * if preceded by a designated element out of sequence
 * Non-compliant - s4 is 1, 4, 3, 0
 */
struct mystruct s4 = { .b = 2, .c = 3, .a = 1, /* b */ 4 };

AMD4.50 : Add a “See also” section:

See also

Rule 9.6

3.1.7 Amend Rule 10.1 and Rule 18.3 — "Expressions" not "objects"

Amendment

“Expressions” should be used instead of “objects”.

AMD4.51 : In the “Exception” section of Rule 10.1, in Exception 2, replace:

objects

with

expressions

Section 3: Technical Corrigenda

33

AMD4.52 : In the “Headline” section of Rule 18.3, replace:

objects of pointer type

with

expressions of pointer type

Se
ct

io
n

3:
 T

ec
hn

ic
al

 C
or

ri
ge

nd
a

34

4 Consequential amendments

4.1 Section 8 — Rules

4.1.1 Amend Rule 1.4 — General restrictions

Amendment

Remove the general restriction on features covered by this amendment.

AMD4.53 : Delete the bullet point relating to the <stdatomics.h> header file.

AMD4.54 : Delete the bullet point relating to the <threads.h> header file.

4.1.2 Amend Rule 7.5 — Small integer constants

Amendment

Add a “See also” section, with a reference to new Rule 7.6

AMD4.55 : Add a “See also” section:

See also

Rule 7.6

4.1.3 Rule 9.1 — Initialization

Amendment

Extend rule to exclude atomic initialization.

AMD4.56 : In the “Amplification” section, append a new paragraph:

This rule does not apply to _Atomic qualified objects, which are covered by Rule 9.7.

AMD4.57 : Update the “See also” section to add in sequence:

Rule 9.7,

4.1.4 Amend Rule 9.2 — Aggregate initializers

Amendment

Add a “See also” section, with a reference to new Rule 9.6

AMD4.58 : Add a “See also” section:

See also

Rule 9.6

35

4.2 Section 9 — References

4.2.1 Insert new references

Amendment

Insert new references to the end of the existing references list.

AMD4.59 : Insert Reference 44 (RFC 3986):

44: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax,
The Internet Society, 2005
Available from https://www.ietf.org/rfc/rfc3986.txt

AMD4.60 : Insert Reference 45 (ARINC 653):

45: ARINC 653, Avionics Application Software Standard Interface,
Aeronautical Radio Inc., https://aviation-ia.sae-itc.com/standards/

AMD4.61 : Insert Reference 46 (AUTOSAR):

46: AUTomotive Open System ARchitecture (AUTOSAR), https://www.autosar.org

AMD4.62 : Insert Reference 47 (OSEK/VDX):

47: OSEK/VDX Operating System,
Version 2.2.3., 2005

4.3 Appendix A — Summary of Guidelines

AMD4.63 : Update existing entries, as follows:

Guideline Category Headline

Rule 2.2 Required A project shall not contain dead code

Rule 2.7 Advisory A function should not contain unused parameters

Rule 8.9 Advisory An object should be declared at block scope if its identifier only appears in a
single function

Rule 11.3 Required A conversion shall not be performed between a pointer to object type and a
pointer to a different object type

Rule 11.8 Required A conversion shall not remove any const, volatile or _Atomic qualification
from the type pointed to by a pointer

Rule 13.2 Required The value of an expression and its persistent side effects shall be the same
under all permitted evaluation orders and shall be independent from
thread interleaving

Rule 18.6 Required The address of an object with automatic or thread-local storage shall not be
copied to another object that persists after the first object has ceased to
exist

Rule 18.8 Required Variable-length arrays shall not be used

Se
ct

io
n

4:
 C

on
se

qu
en

tia
l a

m
en

dm
en

ts

36

https://www.ietf.org/rfc/rfc3986.txt

AMD4.64 : Insert new entries, in the appropriate places, as follows:

Guideline Category Headline

Dir 5.1 Required There shall be no data races between threads

Dir 5.2 Required There shall be no deadlocks between threads

Dir 5.3 Required There shall be no dynamic thread creation

Rule 2.8 Advisory A project should not contain unused object definitions

Rule 7.6 Required The small integer variants of the minimum-width integer constant macros
shall not be used

Rule 9.6 Required An initializer using chained designators shall not contain initializers without
designators

Rule 9.7 Mandatory Atomic objects shall be appropriately initialized before being accessed

Rule 11.10 Required The _Atomic qualifier shall not be applied to the incomplete type void

Rule 12.6 Required Structure and union members of atomic objects shall not be directly
accessed

Rule 18.10 Mandatory Pointers to variably-modified array types shall not be used

Rule 21.25 Required All memory synchronization operations shall be executed in sequentially
consistent order

Rule 21.26 Required The Standard Library function mtx_timedlock() shall only be invoked on
mutex objects of appropriate mutex type

Rule 22.11 Required A thread that was previously either joined or detached shall not be
subsequently joined nor detached

Rule 22.12 Mandatory Thread objects, thread synchronization objects, and thread-specific storage
pointers shall only be accessed by the appropriate Standard Library
functions

Rule 22.13 Required Thread objects, thread synchronization objects and thread-specific storage
pointers shall have appropriate storage duration

Rule 22.14 Mandatory Thread synchronization objects shall be initialized before being accessed

Rule 22.15 Required Thread synchronization objects and thread-specific storage pointers shall
not be destroyed until after all threads accessing them have terminated

Rule 22.16 Required All mutex objects locked by a thread shall be explicitly unlocked by the
same thread

Rule 22.17 Required No thread shall unlock a mutex or call cnd_wait() or cnd_timedwait() for a
mutex it has not locked before

Rule 22.18 Required Non-recursive mutexes shall not be recursively locked

Rule 22.19 Required A condition variable shall be associated with at most one mutex object

Rule 22.20 Mandatory Thread-specific storage pointers shall be created before being accessed

Section 4: Consequential am
endm

ents

37

4.4 Appendix B — Guidelines attributes

AMD4.65 : Insert new entries, in the appropriate places, as follows:

Guideline Category Applies to Analysis

Dir 5.1 Required C11

Dir 5.2 Required C11

Dir 5.3 Required C11

Rule 2.8 Advisory C90, C99, C11 Decidable, System

Rule 7.6 Advisory C99, C11 Decidable, Single Translation Unit

Rule 9.6 Required C99, C11 Decidable, Single Translation Unit

Rule 9.7 Mandatory C11 Undecidable, System

Rule 11.10 Required C11 Decidable, Single Translation Unit

Rule 12.6 Required C11 Decidable, Single Translation Unit

Rule 18.10 Mandatory C99, C11 Decidable, Single Translation Unit

Rule 21.25 Required C11 Decidable, Single Translation Unit

Rule 21.26 Required C11 Undecidable, System

Rule 22.11 Required C11 Undecidable, System

Rule 22.12 Mandatory C11 Undecidable, System

Rule 22.13 Required C11 Decidable, Single Translation Unit

Rule 22.14 Mandatory C11 Undecidable, System

Rule 22.15 Required C11 Undecidable, System

Rule 22.16 Required C11 Undecidable, System

Rule 22.17 Required C11 Undecidable, System

Rule 22.18 Required C11 Undecidable, System

Rule 22.19 Required C11 Undecidable, System

Rule 22.20 Mandatory C11 Undecidable, System

Se
ct

io
n

4:
 C

on
se

qu
en

tia
l a

m
en

dm
en

ts

38

4.5 Appendix H — Undefined and critical unspecified behaviour

4.5.1 Appendix H.1 — Undefined behaviour

AMD4.66 : Replace the the following rows in the table:

Id
Decidable Guidelines Notes

C90 C99 C11

5 No Dir 5.1, Rule 9.7

8 9 No Dir 4.12, Rule 18.6,
Rule 18.9, Rule 21.3,
Rule 22.13, Rule 22.14,
Rule 22.15, Rule 22.20

9 10 No Dir 4.12, Rule 18.6,
Rule 21.3, Rule 22.15

10 11 No Rule 22.13 Compliance with Rule 9.1 also avoids a common
cause of this undefined behaviour but it is not
sufficient to avoid all situations in which an
indeterminate value might arise.

42 Yes Rule 12.6

69 75 No Rule 18.10

70 76 No Rule 18.10

71 No Rule 17.9

112 118 No Dir 4.11, Rule 21.12

185 196 Yes Rule 21.11

* No Rule 22.18 Added by C18

* No Rule 21.26 Added by C18

* No Rule 22.16, Rule 22.17,
Rule 22.18

Added by C18

* No Rule 22.11 Added by C18

* Yes Rule 22.20 Added by C18

* No Rule 22.12, Rule 22.15,
Rule 22.20

Added by C18

197 No Rule 21.10

Section 4: Consequential am
endm

ents

39

4.5.2 Appendix H.2 — Critical unspecified behaviour

AMD4.67 : Replace the entire table as follows:

This also addresses table layout corruption found in Amendment 2.

Id
Critical Guidelines Notes

C90 C99 C11

1 1 1 No

2 2 No

3 No

2 3 4 No Rule 21.6

3 4 5 No Rule 21.6

4 5 6 No Rule 21.6

5 6 7 No Rule 21.6

6 Yes

7 8 Yes Rule 5.1

8 9 Yes

9 10 Yes Compliance with Rule 21.16 avoids this unspecified
behaviour in respect of memcmp only.

10 11 Yes Rule 19.2

11 12 Yes

12 13 Yes

13 14 Yes Compliance with Rule 10.1 avoids generation of
negative zeros when operating on expressions that
have a signed type before promotion.

14 15 Yes Rule 7.4

7, 8 15 16 Yes Rule 13.2

9 16 17 Yes Rule 13.2

17 18 Yes Rule 13.1

7 18 19 Yes Rule 13.2

10 19 20 No

20 21 Yes Rule 8.10

21 22 Yes Rule 13.6,
Rule 18.8

7 22 23 Yes Rule 13.1

11 23 24 No

* 24 25 Yes

12 25 26 Yes Rule 20.10,
Rule 20.11

13 26 No

* Yes Added by C18 – #line __LINE__ new-line

27 27 Yes Rule 21.12

28 28 Yes Rule 21.12

29 29 No

30 30 Yes Dir 4.11, Dir 4.15

31 Yes

Se
ct

io
n

4:
 C

on
se

qu
en

tia
l a

m
en

dm
en

ts

40

Id
Critical Guidelines Notes

C90 C99 C11

31 32 Yes Dir 4.11

33 Yes

34 No

14 32 35 No Rule 21.4

15 33 36 No Rule 17.1

34 37 Yes Rule 21.6

16 35 38 Yes Rule 21.6

17 36 39 Yes Rule 21.6

18 37 40 Yes Rule 21.6

38 41 No

19 39 42 No Rule 18.1, Rule 18.2,
Rule 18.3, Rule 21.3

Compliance with either Rule 21.3 or all of Rule 18.1,
Rule 18.2 and Rule 18.3 will avoid this unspecified
behaviour.

40 43 Yes Rule 21.3

44 Yes

45 Yes

20 41 46 Yes Rule 21.9 C11 incorrectly omitted align_alloc, which was
corrected in C18.

21 42 47 Yes Rule 21.9 C11 incorrectly omitted align_alloc, which was
corrected in C18.

22 43 48 Yes Rule 21.10

44 49 Yes Rule 21.10

50 Yes

* Yes Added by C18 – thrd_exit destructor invocation
ordering

* Yes Added by C18 – tss_delete destructor invocations
with multiple threads

45 51 Yes

46 52 Yes Dir 4.15

47 53 Yes Dir 4.15

TC3 54 Yes Dir 4.11, Dir 4.15 Added to C99 by TC3.

TC3 55 Yes Dir 4.11, Dir 4.15 Added to C99 by TC3.

48 56 Yes Dir 4.11

49 57 Yes Dir 4.11

50 58 Yes Dir 4.11

Section 4: Consequential am
endm

ents

41

4.6 Appendix J — Glossary

Amendment

Insert the following new definitions, in the appropriate (alphabetical) order:

AMD4.68 : Insert new uniform resource identifier definition:

Uniform resource identifier (URI)
 A uniform resource identifier (URI) is a compact sequence of characters that identifies an abstract or
physical resource, as defined by RFC 3986 [44].

Se
ct

io
n

4:
 C

on
se

qu
en

tia
l a

m
en

dm
en

ts

42

5 Supporting documents

5.1 Addendum 3 — Coverage against CERT C

Update MISRA C:2012 Addendum 3 [10] to reflect the changes in this Amendment

5.1.1 Guideline by guideline

AMD4.69 : Replace the appropriate rows as follows:

CERT C Rule
MISRA C:2012 Guidelines

Comments
Guidelines Coverage

DCL39-C None None
Recategorized from Out of
Scope

FIO45-C D.5.1 Implicit Weak

CON30-C D.4.12, R.22.13, R.22.1 Explicit Strong

CON31-C R.22.15, R.22.16 Explicit Strong

CON32-C D.5.1 Implicit Weak

CON33-C D.5.1, R.9.7 Implicit Weak

CON34-C D.4.12, R.18.6, R.22.13 Explicit Strong

CON35-C D.5.2 Explicit Weak

CON36-C None None
Recategorized from Out of
Scope

CON38-C None None
Recategorized from Out of
Scope

CON39-C R.22.11 Explicit Strong

CON40-C R.13.2 Explicit Strong

CON41-C None None
Recategorized from Out of
Scope

Note: CON37-C coverage is already included in Addendum 3

5.1.2 Coverage summary

AMD4.70 : Replace the summary table as follows:

Classification Strength Number

Explicit
Strong 46

Weak 6

Implicit
Strong 1

Weak 16

Restrictive
Strong 24

Weak 0

Out of Scope None 0

None None 6

Total 99

43

6 References
The following documents are referenced from within this amendment:

6.1 MISRA C

[1] MISRA C:2012 Guidelines for the use of the C language in critical systems (3rd Edition)
ISBN 978-1-906400-10-1 (paperback), ISBN 978-1-906400-11-8 (PDF),
MIRA Limited, Nuneaton, March 2013

[2] MISRA C:2012 Guidelines for the use of the C language in critical systems (3rd Edition,
1st Revision),
ISBN 978-1-906400-21-7 (paperback), ISBN 978-1-906400-22-4 (PDF),
HORIBA MIRA Limited, Nuneaton, February 2019

[3] MISRA C:2012 Technical Corrigendum 1, Technical clarification of MISRA C:2012,
ISBN 978-1-906400-17-0 (PDF),
HORIBA MIRA Limited, Nuneaton, June 2017

[4] MISRA C:2012 Technical Corrigendum 2, Technical clarification of MISRA C:2012,
ISBN 978-1-911700-00-5 (PDF),
The MISRA Consortium Limited, Norwich, February 2022

[5] MISRA C:2012 Amendment 1, Additional security guidelines for MISRA C:2012,
ISBN 978-1-906400-16-3 (PDF),
HORIBA MIRA Limited, Nuneaton, April 2016

[6] MISRA C:2012 Amendment 2, Updates for ISO/IEC 9899:2011 Core Functionality,
ISBN 978-1-906400-25-5 (PDF),
HORIBA MIRA Limited, Nuneaton, February 2020

[7] MISRA C:2012 Amendment 3, Updates for ISO/IEC 9899:2011 Phase 2 — New C11/C18 features,
ISBN 978-1-911700-02-9 (PDF),
The MISRA Consortium Limited, Norwich, October 2022

[8] MISRA C:2012 Addendum 1, Rule mappings,
ISBN 978-1-906400-12-5 (PDF),
MIRA Limited, Nuneaton, March 2013

[9] MISRA C:2012 Addendum 2 (2nd Edition), Coverage of MISRA C:2012 against ISO/IEC TS
17961:2013 “C Secure”,
ISBN 978-1-906400-18-7 (PDF),
HORIBA MIRA Limited, Nuneaton, January 2018

[10] MISRA C:2012 Addendum 3, Coverage of MISRA C:2012 against against CERT C 2016 Edition,
ISBN 978-1-906400-19-4 (PDF),
HORIBA MIRA Limited, Nuneaton, January 2018

44

6.2 The C Standard

[11] ISO/IEC 9899:1999, Programming languages — C,
International Organization for Standardization, 1999

[12] ISO/IEC 9899:2011, Programming languages — C,
International Organization for Standardization, 2011

[13] ISO/IEC 9899:2018, Programming languages — C,
International Organization for Standardization, 2018

6.3 Other Standards

[14] ARINC 653, Avionics Application Software Standard Interface,
Aeronautical Radio Inc., https://aviation-ia.sae-itc.com/standards/

6.4 Other References

[15] AUTomotive Open System ARchitecture (AUTOSAR), https://www.autosar.org

[16] OSEK/VDX Operating System,
Version 2.2.3., 2005

Section 6: References

45

	1 Overview
	1.1 Applicability
	1.2 C language updates

	2 New guidance
	2.1 Section 7 — Directives
	2.1.1 Create new section 7.5 — Concurrency Considerations

	2.2 Section 8 — Rules
	2.2.1 New Rule 2.8 — Unused objects
	2.2.2 New Rule 7.6 — Small integer constants
	2.2.3 New Rule 9.6 — Chained initialization
	2.2.4 New Rule 9.7 — Atomic initialization
	2.2.5 Amend Rule 11.3
	2.2.6 Amend Rule 11.8
	2.2.7 New Rule 11.10 — The _Atomic qualifier
	2.2.8 New Rule 12.6 — Atomic structures and unions
	2.2.9 Amend Rule 13.2 — Concurrency
	2.2.10 Amend Rule 18.6
	2.2.11 Rule 18.8 and new Rule 18.10 — Guidance on VLAs
	2.2.12 New Rule 21.25 — Atomic functions
	2.2.13 New Rules 21.26 — Mutex functions
	2.2.14 New Rules 22.11-22.20 — Threads

	3 Technical Corrigenda
	3.1.1 Update section 6.9 — Presentation of the guidelines
	3.1.2 Amend Rule 2.2 and Rule 2.7 — Inconsistent headlines
	3.1.3 Amend Rule 3.1 — URIs in comments
	3.1.4 Amend Rule 8.6 — Missing "See also"
	3.1.5 Amend Rule 8.9 — "Declared" not "defined"
	3.1.6 Amend Rule 9.4 — Designated initializers
	3.1.7 Amend Rule 10.1 and Rule 18.3 — "Expressions" not "objects"

	4 Consequential amendments
	4.1 Section 8 — Rules
	4.1.1 Amend Rule 1.4 — General restrictions
	4.1.2 Amend Rule 7.5 — Small integer constants
	4.1.3 Rule 9.1 — Initialization
	4.1.4 Amend Rule 9.2 — Aggregate initializers

	4.2 Section 9 — References
	4.2.1 Insert new references

	4.3 Appendix A — Summary of Guidelines
	4.4 Appendix B — Guidelines attributes
	4.5 Appendix H — Undefined and critical unspecified behaviour
	4.5.1 Appendix H.1 — Undefined behaviour
	4.5.2 Appendix H.2 — Critical unspecified behaviour

	4.6 Appendix J — Glossary

	5 Supporting documents
	5.1 Addendum 3 — Coverage against CERT C
	5.1.1 Guideline by guideline
	5.1.2 Coverage summary

	6 References
	6.1 MISRA C
	6.2 The C Standard
	6.3 Other Standards
	6.4 Other References

